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E. Kyrö,18 M. Parrondos,19 M. Yela,19 G. Zablocki,20 D. Moore,21 H. Dier,22
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[1] We estimate the tropospheric column ozone using a forward trajectory model to
increase the horizontal resolution of the Aura Microwave Limb Sounder (MLS) derived
stratospheric column ozone. Subtracting the MLS stratospheric column from Ozone
Monitoring Instrument total column measurements gives the trajectory enhanced
tropospheric ozone residual (TTOR). Because of different tropopause definitions, we
validate the basic residual technique by computing the 200-hPa-to-surface column and
comparing it to the same product from ozonesondes and Tropospheric Emission
Spectrometer measurements. Comparisons show good agreement in the tropics and
reasonable agreement at middle latitudes, but there is a persistent low bias in the TTOR
that may be due to a slight high bias in MLS stratospheric column. With the improved
stratospheric column resolution, we note a strong correlation of extratropical tropospheric
ozone column anomalies with probable troposphere-stratosphere exchange events or folds.
The folds can be identified by their colocation with strong horizontal tropopause gradients.
TTOR anomalies due to folds may be mistaken for pollution events since folds often occur
in the Atlantic and Pacific pollution corridors. We also compare the 200-hPa-to-surface
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column with Global Modeling Initiative chemical model estimates of the same quantity.
While the tropical comparisons are good, we note that chemical model variations in 200-
hPa-to-surface column at middle latitudes are much smaller than seen in the TTOR.
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1. Introduction

[2] The tropospheric column ozone residual method esti-
mates the tropospheric column ozone by subtracting meas-
urements of stratospheric ozone column from total column
ozone. The tropospheric ozone column rarely exceeds 80
DU and thus is always a smaller component of the total
ozone column (�250–500 DU). Total ozone column has
been accurately measured by the Total Ozone Mapping
Spectrometer instrument series starting in late 1978 and
most recently the Dutch-Finnish Ozone Monitoring Instru-
ment (OMI) [Levelt et al., 2006] on Aura. Although tropo-
spheric ozone can be estimated directly using UV
instruments [e.g., Liu et al., 2006], we focus on the residual
technique because, in theory, it can produce a more precise
tropospheric column. The key to producing the tropospheric
column is an accurate estimation of the larger stratospheric
ozone column. Various instruments have been used to derive
the stratospheric column including Stratospheric Aerosol
and Gas Experiment II [Fishman and Larsen, 1987; Fishman
et al., 1990], Upper Atmosphere Research Satellite (UARS)
Microwave Limb Sounder (MLS) [Chandra et al., 2003] and
Aura’s Earth Observing System MLS [Ziemke et al., 2006,
hereinafter referred to as Z06]. Up until the launch of Aura
and ENVISAT, near simultaneous stratospheric column and
total column ozone amounts were not available. A brief
review of tropospheric ozone residual techniques is given in
Z06 and is not repeated here.
[3] The Aura MLS instrument [Waters et al., 2006] can

be used to estimate the stratospheric column as in Z06. One
advantage of the Aura MLS over the previous UARS MLS
instrument is that Aura MLS was designed to retrieve ozone
in the lower stratosphere and upper troposphere (UTLS).
The second advantage is that because Aura is in a Sun-
synchronous orbit, Aura MLS instrument can produce near
global maps of stratospheric column on a daily basis. The
OMI and MLS instruments onboard the Aura spacecraft
have been providing global measurements of total column
ozone and stratospheric column soon after the launch of
Aura on 15 July 2004 [Schoeberl et al., 2006]. This has
enabled near global estimates of the tropospheric column on
almost a day-to-day basis from late September 2004 to
present.
[4] In Z06, Aura MLS stratospheric column and OMI

total column ozone data were used to produce a monthly
mean and daily tropospheric ozone residual. However, with
only �14.6 orbits a day, the MLS ascending node (daytime)
measurements of stratospheric column provide only a low
horizontal resolution mapped product (�24.7� longitude by
�2� latitude). The interpolation of MLS data onto the OMI
grid to generate the residual, implicitly forces smaller-scale
variability seen in the OMI total column ozone to be part of
the tropospheric column. This assumption probably does
not strongly affect the computation of the monthly mean
residual because the smaller-scale variability will average
out in a month. Indeed, Z06 showed that monthly mean
sonde profiles were consistent with residual estimates from
ozonesondes. However, the Z06 method does not produce a
reasonable extratropical product as judged by sonde com-
parison (shown below). We hypothesize that the main

problem is that the approach used by Z06 has to be modified
to account for stratospheric column spatial variability.
[5] In this study, we use forward trajectory calculations to

boost the horizontal resolution of the stratospheric column,
and this allows us to generate an improved daily tropo-
spheric ozone residual. In the next section, we describe the
data and method. We validate our results with daily ozone-
sondes. We also compare the data with Tropospheric Emis-
sion Spectrometer (TES) [Beer, 2006] direct estimates of the
ozone column. We show some examples of tropospheric
enhancements near tropopause folds: midlatitude synoptic-
scale features often associated with jumps in the tropopause
height along jets and cutoff low pressure systems. These
jumps are often colocated with changes in column ozone
and water vapor and can be diagnosed from satellite data
[Wimmers and Moody, 2004]. The fold enhancements in
ozone are clearly present in the observations. Finally we
show how our estimates of the tropospheric column com-
pare with NASA Global Modeling Initiative (GMI) esti-
mates of the column (see Z06).
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7. Summary

[50] Forward trajectories are used to increase the spatial
resolution of the stratospheric ozone column in order to
produce a higher-resolution tropospheric column ozone
using the residual method. We use the OMI-Total Ozone
Mapping Spectrometer algorithm for the total column and
MLS V1.5 for the stratosphere. We refer to this product as
the Trajectory Total Ozone Residual (TTOR). We compare
the 200-hPa-to-surface column (200TSC) TTOR against the
200TSC from sondes and TES measurements. Using the
200TSC removes issues associated with different tropo-
pause definitions. Comparisons with sondes and TES show
good agreement in the tropics and reasonable agreement at
middle latitudes. TTOR is an improvement over the Z06
daily product as is shown by comparison to sondes. None-
theless there is a persistent low bias in the TTOR which
appears to be due to high bias in the MLS (V1.5) lower
stratospheric mixing ratio. This low bias led Z06 to add 2.3
DU of ozone to their product which shows up in our
comparisons with their product. We also note that there is
much more variability in the midlatitude TTOR than ozo-
nesondes show. This is probably due to the fact that MLS,
with its 3–4 km weighting function and lower precision in
the lower stratosphere, cannot resolve the steep ozone
gradient at the midlatitude tropopause.
[51] There is a strong correlation of extratropical tropo-

spheric column anomalies with probable troposphere-strato-
sphere folds that are identified by large tropopause height
gradients. Tropospheric ozone residual anomalies due to
folds may be mistaken for pollution events since they often
occur in the Atlantic and Pacific pollution corridors. We
also compare the 200TSC with GMI estimates of the
tropospheric column. While the tropical comparisons are
good, we note that GMI variations in 200TSC at middle
latitudes are much smaller than those estimated using TTOR
thus GMI is somewhat closer to the ozonesondes analysis;
however, more extensive comparisons between GMI and
ozonesondes remain to be done.




